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Abstract

Managing the terabytes of data gathered by satellites
and other sensors is one of NASA'’s greatest challenges.
Finding desired data products is difficult, especially
years after a mission is over. Processing and delivering
data to scientists and the public in a timely manner
can be a challenge, even with current methods of au-
tomation.

Data management includes both data processing and
data tracking. We address the data management prob-
lem by casting it as an AI planning problem. Actions
are data-processing commands, plans are dataflow pro-
grams and goals are metadata descriptions of desired
data products. Data processing is simply plan gen-
eration and execution, and a key component of data
tracking is inferring the effects of a dataflow plan that
is known to have produced a given data product.

We introduce a tractable approach to planning for data
processing, and we describe a particular embodiment
of this approach, called AbpLIM, for Action Descrip-
tion Language for Information Manipulation. We dis-
cuss the connection between data processing and in-
formation integration and why action representations
for information integration are not sufficient for data-
processing domains. We also discuss how to gather
information within a data-processing framework, and
show how ADLIM metadata expressions are a general-
ization of Local Completeness.

1 Introduction
1.1 The NASA data management problem

Managing the terabytes of data gathered by satellites
and other sensors is one of NASA’s greatest challenges.
Satellites, unmanned spacecraft, planetary rovers and
observatories, for all their complexity, can all be viewed
as remote sensors; their sole purpose is to gather data,
which are then processed, delivered to the scientific
community and the public, and archived. The data
management problem is especially acute in the Earth
Sciences, where the data sets are large and diverse, and
there is an increasing demand for real-time data pro-
cessing in support of a wide range of scientific tasks.
Real-time data processing in support of novel science
goals is not feasible with the current approaches, which

typically rely on (1) human-generated scripts to per-
form routine, expected operations, (2) manual data pro-
cessing to handle special cases and (3) filenames and
headers to store metadata. Novel data requests must
either be processed manually or will require new data-
processing scripts, which take time to write and debug.

Furthermore, there is a tremendous problem in data
tracking: keeping track of what data exist, what the
data represent, and where they are stored. Current ap-
proaches leave a significant portion of such vital meta-
data unrecorded, or recorded in ways that that greatly
limit their accessibility, such as the metadata implicit
in filenames and in the directory hierarchy, making it
difficult to locate data years after they have been pro-
duced, especially by those who were not involved in the
production.

Figure 1 shows a typical data processing operation.
Arcs in the figure represent dataflow. Data processing
consists of constructing and executing such dataflow
programs to produce a desired result. Data track-
ing consists of deriving a metadata description of data
products produced by such programs, and storing it in
a database, to facilitate later data searches.

We address the data management problem by cast-
ing it as an AI planning problem. Actions are data-
processing commands, plans are dataflow programs like
Figure 1, and goals are metadata descriptions of desired
data products. Data processing is simply plan genera-
tion and execution, and a key component of data track-
ing is inferring the effects of plans known to have pro-
duced given data. We introduce a new action language
for data management domains, called ADILM.

Although data tracking is the easier problem compu-
tationally, it places more demands on the representa-
tion of data and the actions that manipulate data, since
the system must be able to generate correct and useful
metadata descriptions for the output of any dataflow
program, regardless of how it was generated. For ex-
ample, Collage [14] and MvP [1] are both planners that
have been used to automate data manipulation (in par-
ticular, image processing), but they do not automate
data tracking, and in fact neither uses a representation
that is suitable for metadata generation. Both use an
HTN representation, which allows them to avoid pro-
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Figure 1: A dataflow plan. First, separate monochrome
images taken through red, green and blue filters are
combined to form a color image. Then, these images
are tiled to form a mosaic. Finally, the full resolution
image is archived and a JPEG-compressed version is
stored on a public website.

viding a detailed causal theory of data processing or
data goals, focusing more on the procedures for data
processing. However, it is precisely this detailed causal
theory that is needed to determine the effects of arbi-
trary data-processing plans.

The rest of this paper describes an approach to plan-
ning for data processing. Section 2 discusses the con-
nection between data processing and information inte-
gration and explains why approaches used for informa-
tion integration are inappropriate for data processing
domains. Section 3 discusses how a causal representa-
tion of data-producing actions can facilitate reasoning
about data-processing plans. Section 4 discusses “filter”
actions that transform data. Section 5 discusses the
metadata representation, of which action effects are a
special case. Section 6 discusses how to gather infor-
mation in a data-manipulation framework and shows
that the ADLIM metadata representation is a general-
ization of Local Completeness. Section 7 discusses how
to reason about data-processing plans.

2 Data manipulation vs Information
Integration

There has been substantial work in the area of planning
for information gathering and information integration,
including [13, 16, 12, 7, 10, 2, 11] and many others.
This work can be broadly characterized as extracting
information from a number of data sources and com-
bining the results in order to answer a user query. For
example, if a user requests a listing of all movies cur-
rently showing in San Francisco starring Jackie Chan,
this query could be answered by going to a web site,
such imdb.com, to get a list of movies starring Jackie
Chan and another site, (such as sfgate.com) to find
out which of those movies are showing in San Francisco.
An essential feature of this and other information-
integration problems is that the interesting contents of

the data sources can be completely represented in a
simple logical language, such as SQL or Datalog. As-
pects of the HTML documents for these sites that are
not captured by the logical description are not relevant
to the problem of finding movie listings.

In information integration tasks, the end product is
always information; once information is extracted
from data, the data can be discarded, since all sub-
sequent operations are on a logical representation
of the information.

Data manipulation concerns tasks like image processing
and converting from one data format to another. Data
files are processed by one or more programs (filters)
to produce new data files. Although it is possible to
describe the information contained in the data in some
logical language, these descriptions do not completely
characterize the data.

In data manipulation tasks, the end product is
data; information may or may not be extracted
from data files, and most operations act directly
on the data.

3 Two kinds of sensors

data: information output by a sensing device or
organ that includes both useful and irrelevant or
redundant information and must be processed to be
meaningful

— Merriam-Webster OnLine (http://m-w.com)

Since data come from sensors, a good place to start
the discussion of representing data is how to represent
sensors. There are two types of sensors. One is a “sense
organ,” such as an eye, which feeds information directly
into the brain. The other is a “sensing device,” such as a
Geiger counter, which produces data that must in turn
be sensed and interpreted.

Planners for information gathering or integration
represent sensors as sense organs. For example, to rep-
resent that executing the action ls /bin reveals the
name of every file in /bin, both the UWL [6] and SADL
[8] action languages used by the Internet Softbot [4]
use the annotation observe, where observe (name(f,
n)) means the softbot will observe that the name of
file f is n. At execution time, the appropriate values
of f and n will be determined, and the corresponding
propositions will be inserted into the softbot’s knowl-
edge base. This is the most direct and intuitive way to
represent a sensor. What this encoding actually rep-
resents, however, is not 1s, but the combination of 1s
with a program (called a wrapper) to read in and in-
terpret its output. The wrapper itself is a “black box”
to the planner; the planner “knows” what information
is contained in the output of 1s, but knows nothing of
how that information is encoded. In fact, the output
is not even mentioned anywhere in the action descrip-
tion. Thus, this representation is not suitable for data
management domains, in which the data output itself
is of interest.



A sensing device, in contrast, produces an output or
result that depends on the state of the world. This out-
put may be perceived and interpreted to obtain infor-
mation about the world, but the interpretation depends
on knowing how the output was produced. This kind
of indirect sensing, or testing [17], is exemplified by
Moore’s litmus paper example [18]. The main idea be-
hind testing is to exploit actions with conditional effects
to obtain information about properties of the world
that are not directly perceptible (such as the acidity of
a solution or the amount of radiation emitted by some
source). This strategy only works if the outcome of the
conditional effect (such as the color of the litmus paper
or the frequency of clicks from the Geiger counter) is
directly or indirectly perceptible. Thus, testing must
always bottom out in some sense organ. In the lit-
mus paper example, it bottoms out when the photons
reflected from the paper strike the retina, producing
the sensation of redness or blueness. The agent then
reasons backward from its causal theory to determine
what the redness or blueness says about the acidity of
the solution.

The softbot analogue of the retina is working mem-
ory; in ADLIM, direct perception occurs when the out-
put of a sensor is loaded into working memory. Directly
perceptible properties are properties of the output that
can be computed without resorting to any additional
information about the state of the outside world. Any-
thing else must be inferred from the known causal re-
lationship between the state of the world and the data
contents.

For example, consider the ADLIM representation of
the “piped” version of 1s, where the output is directed
to the input of some other command (as opposed to the
screen). Assume that the output of 1s is designated by
the variable out, and that 1s has no preconditions. The
effect of 1s would be written as

Vf: file, n: filename. (parent.dir(f) = /bin A n
= name(f)) — containsLine(n, out)

This translates to “For each file in directory /bin, there
is a line in the output that is equal to the name of the
file.” The — is used to indicate a conditional effect.
The expression on the left hand side (LHS) of the —
refers specifies the conditions before the action is exe-
cuted needed for the expression on the right hand side
(RHS) to become true after the action is executed. The
predicate containsLine (s1, s2) means that string s; ap-
pears in string s3, delimited by newlines. The truth
value of this predicate can be computed given only
the strings s; and sg, thus satisfying the requirements
stated above for direct observability. The function par-
ent.dir(f), on the other hand, cannot be directly per-
ceived, but once the softbot knows what strings appear
in the output out, it can infer what files are contained
in the directory /bin.

There is a qualitative difference between predicates
and functions like containsLine, which are directly per-
ceptible and those like parent.dir, which are not:

e The function parent.dir is a fluent. That is, its value
depends on the state of the world. Knowing the value
of fis not enough to know the value of parent.dir(f);
it can be different in different hypothetical states of
the world and can change from time to time.

e The relation containsLine is static. Its value depends
only on the values of its arguments, and no change to
the world can change its value. “Sensing” its value is
reduced to loading its arguments into working mem-
ory and performing a simple computation. There are
no preconditions or side-effects to such a computa-
tion, so an explicit sensing action is unnecessary; in-
stead, we can associate with each static predicate or
function a procedure for determining its value. Static
predicates of this form are sometimes called facts.

Comparing this approach to the information-
integration approach reveals that the computation
performed in reading in the output of a data-producing
action, executing procedures to determine the values
of static predicates and inferring the values of fluents
is exactly what a wrapper does. We’ve changed the
wrapper from a “black box” to a “white box,” which
is integrated into the reasoning process of the planner
itself. This change in representation gives the planner
the ability to reason about actions that manipulate
data, which is not possible given the “sense organ”
representation of information-producing actions.

The difference between this approach and the work
in testing [17] is one of simplicity and tractability. We
only allow data-producing actions to be used as sensors,
so we exclude, for example, trying to open a door in or-
der to find out if it is locked. We also disallow data
sources that provide disjunctive information, and our
representation of world knowledge is based on three-
valued logic, rather than possible worlds. As a conse-
quence, not every conceivable data-management prob-
lem can be solved using this representation, but those
that can be solved can be solved using straightforward
planning techniques.

4 Filters and other actions

Filters are actions that transform data. A filter has
one or more inputs and one or more outputs, and the
outputs depend on the inputs in some way, as speci-
fied in the action effect description. It does not modify
its inputs in any way, and the outputs are always new
objects. Furthermore, a filter has no side effects. As
with data-producing actions, the effects of filters are
specified using conditional effects. However, since fil-
ters don’t produce information, the LHS cannot refer
to the state of the world, but only to the input data.
Thus, both the LHS and the RHS of effects are specified
with static predicates.

For example, the Unix grep command, when used as
a filter, outputs the lines of text appearing in its input
that contain text matching a given regular expression.
For example, “grep .ps$” outputs all strings from its
input ending in “.ps™



Vs: string. (containsLine(s,input) A matches(s,
“.ps$”)) — containsLine(s,output)

Given this description, and that of 1s, it is easy to see
that the output of “1s /papers | grep .ps$” (direct-
ing the output of 1s /bin to the input of grep .ps$)
will contain the names of all files in /bin that end in
.ps. See Figure 2 for a full action description of a filter.

Data delivery actions take one or more inputs and
change the state of the world to produce some physical
embodiment of the data. The LHS refers to the data,
and so is expressed using static predicates. The RHS
refers to the world, and so is expressed using fluents.

Data mining actions extract features that are la-
tent in data but not readily apparent. Such features
can be represented using “imperceptible” static predi-
cates, and data mining actions map from imperceptible
to perceptible predicates.

Other actions are also possible, including ordinary
causal actions and “data-producing” actions that don’t
actually reveal information about the world. Here’s
an action that just creates a value map (monochrome
image) of a specified size and fills it with a specified
value.

action makeConstant(c: pixelValue,
width, height: natural)
output MCout: valuemap
forall z, y: natural
effect xSize(MCout) = width A
ySize(MCout) = height A
((x < width Ay < height) —
value(z, y, MCout) = c)

5 Representing metadata

The effect description of 1s from Section 3 can be re-
garded as a metadata description of the output of 1s.
It contains two vital components:

1. the information contents of the data (repre-
sented using fluents)

2. how the information is encoded in the data (rep-
resented using static predicates)

The — relates the two. The symbol — does not merely
denote implication, since it involves a temporal element
as well as a logical element. When it appears in the
form of a conditional effect, the — relates the truth
value of the LHS before the action is executed with the
truth value of the RHS after the action is executed.
However, since the expression on the RHS is static, the
only time point of interest is that of the LHS. Thus,
another component of metadata is:

3. what time the information pertains to

For data-producing actions, this time is whenever the
action is executed, so there is no need to state it ex-
plicitly in the action description, but once the output
has been produced, it is necessary to keep track of what
time it pertains to. For example, if a softbot is to pro-
duce nightly backups, the night a given backup was
made should be recorded.

For data goals, the time that the information per-
tains to is also of interest. As discussed in [8], failure to
specify the time for which information is requested is
the reason why a goal of “tell me the color of the door”
could achieved by painting the door blue and then an-
swering “blue.” If instead we ask “what is the current
color of the door,” painting the door only obscures that
information and does nothing to answer the question.
The syntax of data goals is the same as that of data-
producing effects, except that goals can refer explicitly
to the time of interest for fluents on the LHS, using an
extra, optional argument for each fluent. For example,
to refer to the color of the door at 9am today, we can
write ¢ = color(door, 9:00)). If no time is specified, it
is assumed to be whenever the goal is given. If a fu-
ture time is specified, this is interpreted as a request to
schedule a data-gathering operation to be carried out
when that time arrives.

Another difference between data-producing actions
and data goals is that the goals must specify what is to
be done with the data, such as the pathname of the file
where the data should be put. So another component
of metadata is

4. where the data reside (represented using fluents)

Although the location of the data is specified as a fluent,
no time is given; for goals, it is assumed to be “as soon as
possible”; for metadata in the agent’s knowledge base, it
is assumed to be “right now,” since anything else would
amount to incorrect knowledge.

5.1 Limited completeness assumption

For fluents in action effects, we make the STRIPS as-
sumption. For static predicates, the STRIPS assumption
is too restrictive, because there are many properties of
data files, and it would be impossible and inappropri-
ate to list them all for every file produced. For ex-
ample, containsLine technically describes any files that
contain the newline character, including most binary
files, but it is really only meaningful for text files. On
the other hand, referring to individual bits is appropri-
ate for some binary files, but would be inappropriate
for text files, even though all files contain bits. Ac-
tions should only describe their outputs in terms of the
properties that are meaningful.

For static predicates, we make a limited form of the
STRIPS assumption. We require that if any predicate
is used in the RHS of any effect or metadata description,
then the description must be complete with respect to
that predicate. E.g., the output of 1s /bin cannot
contain any lines of text that are not the names of files
in /bin. Any static property that does not appear in
the RHS of a metadata description will be unknown.

This assumption applies to metadata knowledge as
well as action effects, but not to metadata goals. To
specify goals that are “complete” in the above sense,
one can use the notation =, where A 3 B is equivalent
to (A — B) A (ﬁA — ﬁB)



5.2 Constraints

Many data processing domains require sophisticated
constraint reasoning in order to select parameters ap-
propriately [1, 14]. ADLIM provides “built-in” con-
straints, such as inequality. Additionally, all of the
procedures for evaluating static predicates are imple-
mented as constraints. That is, the set of possible val-
ues for each argument is restricted based on the other
arguments. It is useful to know what arguments will
be determined if singleton values are provided for other
arguments. We use the predicate bound to represent
that the value(s) of an argument are determined. For
example, we can write

containsLine(s, data) A bound(out) —bound(s)

to represent that once the output out is known, every
line of text in data can be determined. By definition,
the return value of a function (or the boolean value
of a relation) will be bound if all its arguments are
bound. Additionally, by convention, the last argument
of a static predicate is the data being described. If
that argument is bound then all other arguments will
be bound, as in the above example. This can, how-
ever, be overridden to capture binding patterns, which
require particular arguments to be specified. For exam-
ple, consider the predicate contains(s, data), meaning
data contains s as a substring. It is possible to list all
substrings of data once the value of data is known, but
it would not be practical.

Additionally, unary constraints can be associated
with types. For example, a Unix filename can be any
non-empty string that does not contain the character
“/”. This constraint can be represented by the regu-
lar expression “~[/]1+”. Similarly, a natural (number)
is an integer whose value is greater than zero, which is
represented by an inequality constraint.

5.3 Example

Suppose plot is a grayscale image (valuemap) corre-
sponding to an elevation map of the San Francisco Bay
Area. Let xProj and yProj be linear functions mapping
the x, y coordinates of the image to the correspond-
ing longitude, latitude. Let hProj be a linear function
mapping elevation to pixel values in the image, where
lower (blacker) values correspond to lower elevations.
Let elevation(z, y, w, h) be a fluent function returning
the average elevation over the w by h square centered
at z, y. The metadata description of plot would be

xSize(plot) = XMAX AySize(plot) = YMAX A
Vz,y: natural, el: real.
(z < XMAX Ay < YMAX A
el=elevation(xProj(x),yProj(y),XRES,YRES)
— value(z, y, plot) = hProj(el)

where words in ALL CAPS are constants. We use
the following shorthand notation in this example and
the rest of the paper. “f(g(z))” in the RHS is equiva-
lent to “(y = g(z)) — f(y)” and “f(z) = g(z)” in the
RHS is equivalent to “(y = g(z)) — (f(z) = y).” E.g.,

“value(z, y, plot) = hProj(el)” is a shorthand for “(hp
= hProj(el)) — value(z, y, plot) = hp.” Note that this
description quantifies over the pixels in the image. It
would almost never be desirable to extract the infor-
mation associated with each pixel, but it is useful to
describe the file in terms of what each pixel represents,
since image-processing programs typically operate on
pixels.

6 Information gathering

Most data-processing plans pass data directly from one
action to another, without any requirement for the
agent to “know” the contents. However, there are cases
in which the agent must explicitly gather information
in support of planning, to determine the value of a pa-
rameter to an action or to make a decision.

In sADL, it is straightforward for an agent to de-
termine what it “knows” as a result of executing ac-
tions, since these facts are expressed directly as ob-
serve effects and are inserted into the knowledge base.
In ADLIM, information gathering requires the following
steps:

1. formulate an information goal

2. construct a plan to achieve the goal, by finding or
creating a file that contains the desired information.

3. execute the plan
4. extract the information from the resulting data.

6.1 Information goals

An information goal is just like a data goal except that
the format of the data is not of interest. All that
matters is that the desired attributes can be extracted
from the data. This can be assured using the predicate
bound, discussed in Section 5. To obtain the names of
all (and only) files in directory /bin, we can write

(parent.dir(f) = /bin A n = name(f))
= bound(n)

Since we know that an “effect” of evaluating con-
tainsLine is

(containsLine(s, data) A bound(data) )
— bound(s),

the goal bound(n) can be satisfied by containsLine(n,
out) A bound(out), giving the new goal

(—bound(n) A parent.dir(f) = /bin A

n =name(f)) 3 (containsLine(n, out) A
bound(out)),

where the —bound(n) is used to satisfy the “only if” part
of the goal. The containsLine(n, out) can be satisfied
by 1s /bin, the bound(out) can be satisfied by reading
the output of 1s into working memory, and —bound(n)
is true before 1s is executed, so executing 1s /bin,
loading out into working memory then querying for the
possible values of n will reveal the names of all files in
/bin.



The LHS in information goals must be conjunctive.
As mentioned in Section 3, ADLIM cannot be used to
represent knowledge about disjunctions.

6.2 Local completeness

Given the above restriction, an information goal is
equivalent to a Local Closed-World (LCW) [3, 5] or
Local Completeness (LC) [15, 7] statement, which ex-
presses the fact that an agent or an information source
has complete information about some locale, such as
the files in a directory. Consider an ADLIM formula of
the form

VE1, ... T D(z1, . zn) S

(bound(z1)A ... Abound(zy))

where ®(z1,...,2,) is a conjunctive formula contain-
ing only constants and the variables zi,... z,. If an
agent knows all values of z1,... z,, then it will know
all ground instances of ®(z1, ..., z,) that are true, and
thus will be able to determine, for any ground instance,
whether it is true or false. That is exactly the definition
of LCW [3].

LCW was generalized by [15, 7] to support con-
straints that restrict the set over which an information
source is complete, without returning more information
about the set. The simpler and more general represen-
tation is the LC representation in [7], where a relation
is a constraint if it contains a variable whose value is
not returned in answer to a query. This can easily be
represented in ADLIM. by variables x in the LHS for
which there is no bound(z) on the RHS.

For example, to represent the goal of knowing the
names of all files in /bin larger than 1 gigabyte (GB),
we can write

((pathname(f) = n) A (size(f) = s) A(s > 10%))
— bound(n).

The size of the files restricts the set of objects for which
information is returned, but no information is returned
about the exact size of the files.

LC can also be used to state that one data source
contains all the information contained in another. This
sort of metadata can also be expressed in ADLIM. In
fact, that is essentially what the description of a filter
is. For example, from the description of grep, we can
conclude that the input subsumes the output.

In general, any ADLIM metadata expression can be
used directly as a local completeness expression for the
data source that it describes, since it specifies precisely
what information is represented by the data. LCW for-
mulas can be derived from SADL sensing effects,[9] but
they are quite different representationally, and informa-
tion goals are still different. In ADLIM, all three are the
same.

7 Reasoning about plans

We have implemented a planner that supports a large
subset of the ADLIM language and are in the process

of improving it, both in functionality and in efficiency.
A discussion of the planner is beyond the scope of this
paper, but here we briefly discuss how planning can be
done using ADLIM, and we show a concrete example.

The main difference between ADLIM plans and plans
in other languages is that actions can have inputs and
outputs, which are represented as variables. For a plan
to be correct, all inputs must be bound to exactly
one output from an earlier action (or an existing data
file). Because metadata descriptions contain univer-
sally quantified variables over universes that may never
be known, the standard approach of replacing a univer-
sally quantified goal with an equivalent ground conjunc-
tion won’t work; it is necessary to satisfy universally
quantified goals directly with universally quantified ef-
fects; we use the same approach used in the PUCCINI
planner [10].

Since a goal is a metadata expression, it has a LHS,
which refers to the initial state (or earlier), and a RHS,
which refers to the final state. A planner can use regres-
sion, in which the RHS is regressed backward in time
until the initial state plus the LHS entail the RHS, or
progression, in which the current state and the LHS are
progressed forward in time until they entail the RHS.
Since the LHS specifies the information that is desired,
it can provide substantial guidance to the search.

7.1 Example

We will show an example of planning by goal regression.
Let’s return to the elevation map of the San Francisco
Bay, discussed in Section 5. Suppose we want to pro-
duce a color image identical to this map, except that
pixel values corresponding to points below sea level are
blue — darker blue corresponding to greater depth. We
can best describe this goal using an HSV (hue, satu-
ration, value) representation of the color. All points
should have the same value (brightness) as the original
elevation map. Points above sea level should have zero
saturation (gray pixels). Points below sea level should
have a hue of blue and maximum saturation.

Vz,y: natural, h, s, v: pixelValue, elev: real.
(z<XMAX A y<YMAX A
elev=elevation(xProj(z),yProj(y),XRES,YRES)) —

((color(z,y,map)=HSVcolor(h,s,hProj(elev)) A
(elev>0 — s = 0) A
(elev<0 — s=MAXVALUE A h=BLUE)))

There is no need to specify the hue for pixels corre-
sponding to points above sea level, since the hue is irrel-
evant if the saturation is zero. This goal can be solved
by using HSVcompose, where the value map is the ele-
vation map, the hue map is a solid BLUE, and the sat-
uration map is the result of thresholding the elevation
map, such that values below zero elevation correspond
to MAXVALUE pixels and values above correspond to
zero. If we regress the RHS through HSVcompose, with
the I/O assignment map = HSVout, we get a new goal,
in which the color(z, y, map) condition is deleted (since



it is satisfied by HSVcolor), and the preconditions of
HSVcolor (underlined) are added.

xSize(hue) = zs A xSize(sat) =
xSize(val) = zs A _ySize(val) =
ySize(hue) = ys A ySize(sat) = ys
z < xSize(hue) A y < ySize(hue) A

value(z, y, hue) = h A value(z, vy, sat) = s A
value(z, y, val) = hProj(elev) A

(elev >0 —=s=0)A

(elev <0 — s = MAXVALUE A h = BLUE)

We need an action to produce a threshold map corre-
sponding to sea level. The arguments are the threshold
value and the values to assign to pixels that that fall
below and above the threshold.

action threshold(thresh,below,above: pixel-
Value)
input  THin: valuemap
output THout: valuemap
forall =z, y: natural, v: pixelValue
effect
xSize( THout) = xSize( THin) A
ySize( THout) = ySize(THin) A
(z < xSize(THin) Ay < ySize(THin) A
v = value(z, y, THin) )
— ((w<thresh—value(z,y, THout)=below) A
(v>thresh—value(z,y, THout)=above))

sk
> > >

We can then regress the above goal through
threshold(hProj(0), MAXVALUE, 0), with I/O as-
signment sat = THout. xSize(sat), ySize(sat) and
value(z, y, sat) are deleted, and the non-redundant pre-
conditions of threshold (underlined) are added.

xSize(hue) = xs A xSize(THin) = zs A

xSize(val) = zs N ySize(val) = ys A

ySize(hue) = ys A ySize(THin) = ys A

x < xSize(hue) A y < ySize(hue) A

v' = value(z, y, THin) Avalue(z, y, hue) = h A

value(z, y, val) = hProj(elev) A

(elev > 0 — v’ > hProj(0)) A

(elev <0 — v/ < hProj(0) A h = BLUE)
Regressing through makeConstant(BLUE, XMAX,
YMAX) with the I/O assignment hue = MCout, the
conditions value(z, y, hue) = h, x < xSize(hue), y <
ySize(hue) and h = BLUE are satisfied, giving

XMAX = xSize(THin) = xSize(val) A

YMAX = ySize(THin) = ySize(val) A

value(z, y, val) = hProj(elev) A

z < XMAX A y < YMAXA

v’ = value(z, y, THin) A

(elev > 0 — v' > hProj(0)) A

(elev <0 — v' < hProj(0))

Matching against the initial state with the I/O assign-
ment THin = plot and val = plot,

z < XMAX Ay < YMAX A
elev = elevation(xProj(z).yProj(y), XRES,YRES)

A(elev > 0 — hProj(elev) > hProj(0))
N(elev <0 — hProj(elev) < hProj(0))

action HSVcompose(zs, ys: natural)
input  hue, sat, val: valuemap
output HSVout: colormap
precond xSize(hue) = zs A xSize(sat) = xs A
xSize(val) = xs A ySize(val) = ys A
ySize(hue) = ys A ySize(sat) = ys
forall =z, y: natural, h, s, v: pixelValue
effect
xSize( HSVout) = xzs A ySize(HSVout) = ys A
((z <zs Ny < ys A value(z, y, hue) = h A
value(z, y, sat) = s A value(z,y, val) = v)
— color(z,y,HSVout)=HSVcolor(h,s,v))

Figure 2: HSVcompose composes three monochrome im-
ages into a color image. This is essentially the same as
the compose action in Figure 1, except that compose
uses an RGB (red, green, blue) color model, whereas
this action use an HSV (hue, saturation, value) rep-
resentation. The inputs are three wvaluemaps, which
are essentially monochrome images containing the hues,
saturations and values that are to be combined. The
output is a colormap, whose pixel values are numbers
that can be also represented as RGB or HSV triples.
The function HSVcolor returns the corresponding color
value for a given h,s,v triple. The sole precondition is
that the three input images have the same dimensions,
and the effect is to produce the corresponding output,
also with the same dimensions. The action quantifies
over pixels in the images. The variables z and y are nat-
ural numbers, and h, s and v are the values of pixels in
the grayscale images.

The first three terms are entailed by the LHS. The rest
follows from the fact that hProj is an increasing linear
function.

8 Conclusions

We discussed a practical planner-based approach to
data management that facilitates both data processing
and tracking. This approach removes the need for soft-
ware designers or mission operators to custom design
solutions to every type of data request, allowing them
instead to focus on providing models of available com-
mands and information resources. We illustrated the
approach with the ADLIM language and showed how to
reason about data-processing plans in this language.
We also showed how ADLIM can be used for informa-
tion gathering as well as data processing, and demon-
strated that ADLIM metadata formulas subsume Local
Completeness. This work builds on ideas from previous
languages, particularly SADL [10] and the LC represen-
tation from the Razor system [7]. The LHS of informa-
tion goals is similar to initially goals in SADL, which
are used to refer to information about the initial state.

We have implemented a simple planner that sup-
ports an earlier version of ADLIM, but much work re-
mains. Although ADLIM is simple language, the sim-



plest we could think of that is capable of represent-
ing data management domains, metadata can be quite
complex, since they describe data that in turn describe
the world. Thus, the meta problem of figuring out how
to represent the metadata for a particular file or action
can be a challenge, involving complex spatio-temporal
representation.

We are exploring ways to reason about plan quality,
which we define as a numeric function of attributes like
data volume and image compression.
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